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Summary. We study the asymptotic properties of adaptive LASSO estimators in sparse,

high-dimensional, linear regression models when the number of covariates may increase

with the sample size. We consider variable selection using the adaptive LASSO, where

the L1 norms in the penalty are re-weighted by data-dependent weights. We show that,

if a reasonable initial estimator is available, then under appropriate conditions, adaptive

LASSO correctly select covariates with nonzero coefficients with probability converging

to one and that the estimators of nonzero coefficients have the same asymptotic dis-

tribution that they would have if the zero coefficients were known in advance. Thus,

the adaptive LASSO has an oracle property in the sense of Fan and Li (2001) and Fan

and Peng (2004). In addition, under a partial orthogonality condition in which the

covariates with zero coefficients are weakly correlated with the covariates with nonzero

coefficients, univariate regression can be used to obtain the initial estimator. With this

initial estimator, adaptive LASSO has the oracle property even when the number of

covariates is greater than the sample size.
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1 Introduction

Consider a linear regression model

Yi = x′iβ + εi, i = 1, . . . , n, (1)

where β is a pn× 1 vector, ε1, . . . , εn are i.i.d. random variables with mean zero and finite variance

σ2. We note that pn, the length of β, may depend on the sample size n. We assume that the

response and covariates are centered, so the intercept term is zero. We are interested in estimating

β when pn is large or even larger than n and the regression parameter is sparse in the sense that

many of its elements are zero. Our motivation comes from studies that try to correlate a certain

phenotype with high-dimensional genomic data. With such data, the dimension of the covariate

vector can be much larger than the sample size. The traditional least squares method is not

applicable, and regularized or penalized methods are needed. The LASSO (Tibshirani, 1996) is a

penalized method similar to the ridge regression but uses the L1 penalty
∑pn

j=1 |βj | instead of the

L2 penalty
∑pn

j=1 β2
j . So the LASSO estimator is the value that minimizes

n∑

i=1

(Yi − x′iβ)2 + λ

pn∑

j=1

|βj |, (2)

where λ is the penalty parameter. An important feature of LASSO is that it can be used for

variable selection. Compared to the classical variable selection methods such as subset selection,

the LASSO has two advantages. First, the selection process in LASSO is continuous and hence

more stable than the subset selection, which is a discrete and non-continuous. Second, the LASSO

is computationally feasible for high-dimensional data. In contrast, computation in subset selection

is combinatorial and not feasible when pn is large.

Several authors have studied the properties of LASSO. When pn is fixed, Knight and Fu (2001)

showed that, under appropriate conditions, the LASSO is consistent for estimating the regression

parameter and its limiting distributions can have positive probability mass at 0 when the true

value of the parameter is zero. Leng, Lin and Wahba (2005) showed that LASSO is in general not

path consistent in the sense that (1) with probability greater than zero, the whole LASSO path

may not contain the true parameter value; (2) even if the true parameter value is contained in the
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LASSO path, it cannot be achieved by using prediction accuracy as the selection criterion. For

fixed pn, Zou (2006) further studied the variable selection and estimation properties of LASSO.

He showed that the positive probability mass at 0 of the LASSO, when the true value of the

parameter is 0, is in general less than 1, which implies that LASSO is in general not variable

selection consistent. He also provided a condition on the design matrix for the LASSO to be

variable selection consistent. This condition was also discovered by Meinshausen and Buhlmann

(2006) and Zhao and Yu (2006). In particular, Zhao and Yu (2006) called this condition the

irrepresentable condition on the design matrix. Meinshausen and Buhlmann (2006) and Zhao and

Yu (2006) allowed the number of variables go to infinity faster than n. They showed that under the

irrepresentable condition, the LASSO is consistent for variable selection, provided that pn is not too

large and the penalty parameter λ grows faster than n1/2. Specifically, pn is allowed to be as large

as exp(na) for some 0 < a < 1 when the errors have Gaussian tails. Thus their results are applicable

to truly high-dimensional data. However, the value of λ required for variable selection consistency

over shrinks the nonzero coefficients, which leads to asymptotically biased estimates of the nonzero

coefficients. Therefore, LASSO is variable-selection consistent under certain conditions, but not in

general. However, if LASSO is variable-selection consistent, then it is not consistent for estimating

the nonzero parameters. Therefore, these studies confirm the suggestion that LASSO does not

possess the oracle property (Fan and Li 2001, Fan and Peng 2004). Here the oracle property of a

method means that it can correctly select the nonzero coefficients with probability converging to

one and that the estimators of the nonzero coefficients are asymptotically normal with the same

means and covariance that they would have if the zero coefficients were known in advance. On

the other hand, LASSO has the persistence property in estimating Xβ when p is larger than n

(Greenshtein and Ritov 2004).

In addition to LASSO, other penalized methods have been proposed for the purpose of simul-

taneous variable selection and shrinkage estimation. Examples include the bridge penalty (Frank

and Friedman 1996) and the SCAD penalty (Fan 1997; Fan and Li, 2001). For the SCAD penalty,

Fan and Li (2001) studied asymptotic properties of penalized likelihood methods when the number

of parameters is finite. Fan and Peng (2004) considered the same problem when the number of

parameters diverges. They showed that there exist local maximizers of the penalized likelihood that

have the oracle property. Huang, Horowitz and Ma (2006) showed that the bridge estimator in a
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linear regression model has the oracle property under appropriate conditions, if the bridge index

is strictly between 0 and 1. Their result also permits a divergent number of regression coefficients.

While the SCAD and bridge estimators enjoy the oracle property, the objective functions with the

SCAD and bridge penalties are not convex, so it is more difficult to compute these estimators.

However, there has been effort to devise efficient algorithms for non-convex penalized problems

(Fan and Li 2001, Hunter and Li 2005). Another interesting estimator, the Dantzig selector, of β

in high-dimensional settings was proposed and studied by Candes and Tao (2005). This estimator

achieves a loss within a logarithmic factor of the ideal mean squared error and can be solved by a

convex minimization problem.

An approach to obtaining a convex objective function which yields oracle estimators is by using

a weighted L1 penalty with weights determined by an initial estimator (Zou, 2006). Suppose that

an initial estimator β̃n is available. Let

wnj = |β̃j |−1, j = 1, . . . , pn.

Denote

Ln(β) =
n∑

i=1

(Yi − xiβ)2 + λn

pn∑

j=1

wnj |βj |. (3)

The value β̂n that minimizes Ln is called the adaptive LASSO estimator (Zou 2006). If the initial

estimator β̃n is zero-consistent in the sense that estimators of zero coefficients converge to zero in

probability and estimators of non-zero coefficients do not converge to zero, then the weights for

the zero coefficients converge to infinity, while the weights for the nonzero coefficients are bounded.

The precise definition of zero-consistency is given in the next section.

For fixed pn, Zou (2005) proved that the adaptive LASSO has the oracle property. We consider

the case when pn →∞ as n →∞. We show that, if an initial zero-consistent estimator is available

and if pn = O(exp(na)) for some 0 < a < 1, then the adaptive LASSO has the oracle property. Here

a depends on the rate of the initial zero-consistent estimator and the tail behavior of the error term

εi. Thus the number of covariates can be larger than the sample size if an initial zero-consistent

estimator is available.

The rest of the paper is organized as follows. In Section 2, we state the results on variable-

selection consistency and asymptotic normality of the adaptive LASSO estimator. In Section 3,
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we provide sufficient conditions for the marginal regression estimators to be zero-consistent. Thus

under these conditions, marginal regression estimators can be used in the adaptive LASSO. In

Section 4, we present results from simulation studies and a real data example. Some concluding

remarks are given in Section 5.

2 Variable-selection consistency and asymptotic normality

Let the true parameter value be βn
0 . For simplicity of notation, we will simply write β0. Let

β0 = (β′10, β
′
20)

′, where β10 is a kn × 1 vector and β20 is a mn × 1 vector. Suppose that β10 6= 0

and β20 = 0, where 0 is the vector (with appropriate dimension) with all components zero. So kn

is the number of non-zero coefficients and mn is the number of zero coefficients in the regression

model. We note that it is unknown to us which coefficients are non-zero and which are zero.

Let xi = (xi1, . . . , xipn)′ be the pn × 1 vector of covariates of the ith observation, i = 1, . . . , n.

We assume that the Yi’s are centered and the covariates are standardized, i.e.,

n∑

i=1

Yi = 0,
n∑

i=1

xij = 0 and
1
n

n∑

i=1

x2
ij = 1, j = 1, . . . , pn. (4)

We also write xi = (x′i1,x
′
i2)
′ where xi1 consists of the first kn covariates with nonzero coefficients,

and xi2 consists of the remaining mn covariates with zero coefficients. Let Xn, X1n, and X2n be the

matrices whose transposes are X′
n = (x1, . . . ,xn), X′

1n = (x11, . . . ,xn1), and X′
2n = (x12, . . . ,xn2),

respectively. Let

Σn = n−1X′
nXn, Σn11 = n−1X′

1nX1n, and Σn12 = Σ′n21 = n−1X′
1nX2n

Let Hn = Xn1(X′
n1Xn1)−1X′

n1. Let ρ1n and ρ2n be the smallest and largest eigenvalues of Σn,

and let τ1n and τ2n be the smallest and largest eigenvalues of Σ1n, respectively. For any vector

x = (x1, x2, . . .)′, denote

|x| = (|x1|, |x2|, . . .)′, and sgn(x) = (sgn(x1), sgn(x2), . . .)′,

where sgn(x1) = 1 if x1 > 0; = 0 if x1 = 0; and = −1 if x1 < 0. Following Zhao and Yu (2005), we

say that β̂n =s β if and only if sgn(β̂n) = sgn(β).
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Proposition 1 Let Wn1 = diag(wn1, . . . , wnkn), Wn2 = diag(wn,kn+1, . . . , wnpn), and

wn2 = (wn,kn+1, . . . , wnpn)′. Then

P(β̂n =s β0) ≥ P(An ∩Bn), (5)

where

An =
{

2n−1/2|Σ−1
n11X

′
1εn| < 2

√
n |βn1| − n−1/2λn|Σ−1

n11Wn1sgn(β10)|
}

,

and

Bn =
{

2n−1/2|X′
n2(I −Hn)εn| ≤ n−1/2λnwn2 − n−1/2λn|Σn21Σ−1

n11Wn1sgn(β10)|
}

,

where the inequalities in An and Bn are component-wise.

Proposition 1 can be proved following the proof of Proposition 1 of Zhao and Yu (2005).

Let J0n = {j : β0j = 0} and J1n = {j : β0j 6= 0}. Let

bn1 = min{|β0j | : j ∈ J1n}, and bn2 = max{|β0j | : j ∈ J1n}. (6)

Definition 1 We say that β̃n is zero-consistent if (a) maxj∈J0n |β̃nj | = op(1) and, (b) There exists

a constant ξb > 0 such that, for any ε > 0,

P
(

min
j∈J1n

|β̃nj | ≥ ξb bn1

)
> 1− ε

for all n sufficiently large. In addition, β̃n is zero-consistent with rate rn if (a) is strengthened to

rn max
j∈J0n

|β̃nj | = Op(1), (7)

where rn →∞.

We assume the following conditions.

(A1) (a) εi, ε2, . . . are independent and identically distributed random variables with mean zero

and variance σ2, where 0 < σ2 < ∞; (b) For 1 ≤ d ≤ 2, the tail probabilities of εi satisfy

P (|εi| > x) ≤ K exp(−Cxd), i = 1, 2, . . . for constants C and K.
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(A2) The initial estimator β̃n is zero-consistent with rate rn →∞.

(A3) λn →∞, λnkn/n1/2 → 0 and

(a) for 1 < d ≤ 2,
(log kn)1/d

√
n bn1

→ 0, and
λnkn

nb2
n1

→ 0, (8)

√
n(log mn)1/d

λnrn
→ 0, and

k2
n

rnbn1
→ 0. (9)

(b) for d = 1,

(log n)(log kn)√
n bn1

→ 0, and
λnkn

nb2
n1

→ 0, (10)

√
n(log n)(log mn)

λnrn
→ 0, and

k2
n

rnbn1
→ 0. (11)

(A4) There exist constants 0 < τ1 < τ2 < ∞ such that τ1 ≤ τ1n ≤ τ2n ≤ τ2 for all n;

Condition (A1a) is standard in linear regression. Condition (A1b) allows a range of tail behav-

iors of the error term εi, from sub-Gaussian to exponential. Condition (A2) assumes that an initial

zero-consistent estimator exists. Condition (A3) puts restrictions on the numbers of covariates with

zero and nonzero coefficients, the penalty parameter, and the smallest non-zero coefficient. The

number of covariates permitted depends on the tail behavior of the error term. For sub-Gaussian

tail, the model can include more covariates, while for exponential tail, the number of covariates

allowed is fewer. We often have rn = n1/2−δ and λn = na for some 0 < a < 1/2 and small δ > 0.

In this case, the number of zero coefficients can be as large as exp(na(2−δ)). But the number of

nonzero coefficients allowed is on the order of na/2, assuming bn1 > b0 > 0 for all n. (A4) assumes

that the eigenvalues of Σn11 are bounded away from zero and infinity. This is reasonable since the

number of nonzero covariates is small in a sparse model.

Condition (A2) is the most critical one and it is in general difficult to establish. It assumes

that we can consistently differentiate between zero and nonzero coefficients. On the other hand,

this condition essentially reduces the task of establishing oracle property to the simpler property

of zero-consistency.
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Theorem 1 Suppose that conditions (A1)-(A4) hold. Then

P(β̂n =s β0) → 1.

Theorem 2 Suppose that conditions (A1) to (A4) are satisfied. Let s2
n = σ2α′nΣ−1

n11αn for any

kn × 1 vector αn satisfying ‖αn‖2 ≤ 1. Then

n1/2s−1
n α′n(β̂n1 − β0) = n−1/2s−1

n

n∑

i=1

εiα
′
nΣ−1

n11x1i + op(1) →D N(0, 1), (12)

where op(1) is a term that converges to zero in probability uniformly with respect to αn.

This theorem can be proved by verifying the Lindeberg conditions the same way as in the proof of

Theorem 2 of Huang et al. (2006). Thus we omit the proof here.

3 Initial zero-consistent estimator

For the adaptive LASSO estimator to be variable selection consistent and have the oracle property,

it is crucial to have an initial estimator that is zero-consistent. When pn = o(n1/2), the least

squares estimator is consistent and therefore zero-consistent. In this case, we can use the least

squares estimator as the initial estimators for the weights. However, when pn > O(n1/2) or pn > n,

which is the case in many microarray gene expression studies, the least squares estimator is no

longer feasible. When pn > n, the regression parameter is in general not identified without further

assumptions on the covariate matrix. However, if there is suitable structure in the covariate matrix,

it is possible to achieve consistent variable selection and estimation. For example, when the columns

of the covariate matrix X are mutually orthogonal, each regression coefficient can be estimated by

univariate regression. But in practice, mutual orthogonality is often too strong an assumption.

Furthermore, when pn > n, mutual orthogonality of all covariates is not possible, since the rank

of X is at most n− 1. We consider a partial orthogonality condition in which the covariates with

zero coefficients are only weakly correlated with the covariates with nonzero coefficients. We show

that under the partial orthogonality condition and certain other conditions, univariate regression

estimator is zero-consistent even when the number of covariates is greater than n, although it does

not yield consistent estimation of the parameters. The partial orthogonality condition is reasonable
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in microarray data analysis, where the genes that are correlated with the phenotype of interest may

be in different functional pathways from the genes that are not related to the phenotype (Bair et

al. 2004).

With the centering and scaling given in (4), the estimated univariate regression coefficient

β̃j =
∑n

i=1 xijYi∑n
i=1 x2

ij

= n−1
n∑

i=1

xijYi.

Let ξnj = Eβ̃j . Since Eyi = x′(1)iβ10, we have

ξnj = n−1
n∑

i=1

xijx′(1)iβ10. (13)

We make the following assumptions:

(B1) (a) εi, ε2, . . . are independent and identically distributed random variables with mean zero

and variance σ2, where 0 < σ2 < ∞; (b) For 1 ≤ d ≤ 2, the tail probabilities of εi satisfy

P (|εi| > x) ≤ K exp(−Cxd), i = 1, 2, . . . for constants C and K.

(B2) The covariates of the nonzero coefficients and those of the zero coefficients are only weakly

correlated
1
n

n∑

i=1

xijxik = O(n−1/2), j = Jn0, k ∈ Jn1.

(B3) (a) There exists a constant ξr > 0 such that min{|ξnj |, j ∈ Jn1} > 2ξrbn1; (b) There exists a

constant 0 < b2 < ∞ such that bn2 ≤ b2. Here bn1 and bn2 are defined in (6).

(B4). (a) rn →∞ and rnknn−1/2 → 0; (b) For 1 < d ≤ 2, rnn−1/2(log mn)1/d → 0, and for d = 1,

rnn−1/2(log n)(log mn) → 0; (c) kn exp(−Cξrb
d
n1n

d/2) → 0.

We note that (B1) is the same as (A1). (B2) is the weak partial orthogonality assumption. (B3a)

requires that the “correlation” between Y and xj converges to zero no slower than the smallest

non-zero coefficient. (B3b) requires that the non-zero coefficients are bounded above. (B4) puts

restrictions on the rate of growth of kn and mn.

Theorem 3 Let c0 be a positive constant. Suppose that conditions (B1) to (B4) hold. Then

P
(

rn max
j∈Jn0

|β̃nj | > c0

)
→ 0, and P

(
min
j∈Jn1

|β̃nj | > ξrbn1

)
→ 1.
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That is, β̃n is zero-consistent with rate rn.

This theorem shows that condition (A2) is satisfied under (B1) to (B4), which provides justifica-

tion for using univariate regression estimator for adaptive LASSO as the initial estimator under the

partial orthogonality condition. Therefore, under (A1), (A3), (A4) and (B2)-(B4), we can first use

the univariate regression to obtain the initial zero-consistent estimators, and use them as weights in

the adaptive LASSO to achieve variable-selection consistency and oracle efficiency. In the special

case when the number of nonzero coefficients kn is finite and smallest absolute nonzero coefficient

bn1 > b1 for some b1 > 0, the conditions can be much simplified. Specifically, (A3) simplifies to

(A3*) λn → ∞, λn/n1/2 → 0 and (a) for 1 < d ≤ 2,
√

n(log mn)1/d/(λnrn) → 0. (b) for d = 1,
√

n(log n)(log mn)/(λnrn) → 0.

(B4) simplifies to

(B4*) (a) rn → ∞, rnn−1/2 → 0; (b) for 1 < d ≤ 2, rnn−1/2(log mn)1/d → 0, and for d = 1,

rnn−1/2(log n)(log mn) → 0.

4 Numerical Studies

We conduct simulation studies to evaluate the finite sample performance of the adaptive LASSO

estimate and use a real data example to illustrate the application this method. Because our main

interest is in when pn is large and Zhou (2005) has conducted simulation studies of adaptive LASSO

in low dimensional settings, we focus on the case when pn > n.

4.1 Simulation study

The adaptive LASSO estimate can be computed by a simple modification of the LARS algorithm

(Efron et al. 2004). The computational algorithm is omitted here. In simulation study, we are

interested in (1) accuracy of variable selection and (2) prediction performance measured by mse

(mean squared error). For (1), we compute the frequency of correctly identifying zero and nonzero

coefficients in repeated simulations. For (2), we compute the median prediction mse which is

calculated based on the predicted and observed values of the response from independent data not

used in model fitting. We also compare the results from the adaptive LASSO to those from the

standard LASSO estimate.
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We simulate data from the linear model

y = x′β + ε, ε ∼ N(0, σ2).

Eight examples with pn > n are considered. In each example, the covariate vector is generated

as normal distributed with mean zero and covariance matrix specified below. The value of x is

generated once and then kept fixed. Replications are obtained by simulating the values of ε from

N(0, σ2) and then setting y = x′β + ε for the fixed covariate value x. Summary statistics are

computed based on 500 replications.

The eight models we consider are

1. p = 200 and σ = 1.5. The first 15 covariates (x1, . . . , x15) and the remaining 185 covarites

(x16, . . . , x200) are independent. The pairwise correlation between the ith and the jth compo-

nents of (x1, . . . , x15) is r|i−j| with r = 0.5, i, j = 1, . . . , 15. The pairwise correlation between

the ith and the jth components of (x16, . . . , x200) is r|i−j| with r = 0.5, i, j = 16, . . . , 200.

Components 1–5 of β are 2.5, components 6–10 are 1.5, components 11–15 are 0.5, and the

rest are zero. The covariate matrix has the partial orthogonal structure.

2. The same as Example 1, except that r = 0.95.

3. p = 200 and σ = 1.5. The predictors in Example 3 are generated as follows:

xi = Z1 + ei, Z1 ∼ N(0, 1), i = 1, . . . , 5;

xi = Z2 + ei, Z2 ∼ N(0, 1), i = 6, . . . , 10;

xi = Z3 + ei, Z3 ∼ N(0, 1), i = 11, . . . , 15;

Xi ∼ N(0, 1), Xi i.i.d. i = 16, . . . , 200,

where ei are i.i.d N(0, 0.01), i = 1, . . . , 15. The first 15 components of β are 1.5, the remaining

ones are zero.

4. The same as Example 1, except that p = 400.

5. The same as Example 2, except that p = 400.

6. The same as Example 3, except that p = 400.
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7. p = 200 and σ = 1.5. The pairwise correlation between the ith and the jth components of

(x1, . . . , x200) is r|i−j| with r = 0.5, i, j = 1, . . . , 300. Components 1–5 of β are 2.5, components

11–15 are 1.5, components 21–25 are 0.5, and the rest are zero.

8. The same as example 7, except that r = 0.95.

Partial orthogonal condition is satisfied in Examples 1–6. Especially, Examples 1 and 4 represent

cases with moderately correlated covariates; Examples 2 and 5 have strongly correlated covariates;

while Examples 3 and 6 have the grouping structure (Zou and Hastie, 2005) with three equally

important groups, where covariates within the same group are highly correlated. Examples 7 and 8

represent the cases where the partial orthogonality assumption is violated. Covariates with nonzero

coefficients (1-5, 11-15, 21-25) are correlated with the rest.

In each example, the simulated data consist of a training set and a testing set, each of size

100. For both LASSO and Adaptive LASSO, tuning parameters are selected based on V-fold cross

validation with the training set only. We set V = 5. After tuning parameter selection, LASSO and

adaptive LASSO estimates are computed using the training set. We then compute the prediction

MSE for the testing set, based on the training set estimate.

Summary statistics of variable selection and PMSE results are shown in Table 1. It can be seen

that for Examples 1-6, the adaptive Lasso yields smaller models with better prediction performance.

However, due to the very large number of covariates, the number of covariates identified by the

adaptive Lasso is still larger than the true value (15). When the partial orthogonality condition is

not satisfied (Examples 7 and 8), the adaptive Lasso still yields smaller models with satisfactory

prediction performance (comparable to Lasso). Extensive simulation studies with other value of p

and different marginal and joint distributions of x yield similar, satisfactory results. We show in

Figures 1 and 2 the frequencies of individual covariate effects being properly classified: zero versus

nonzero. For a better view, we only show the first 100 covariates.

4.2 Data example

We use the data set reported in Scheetz et al. (2006) to illustrate the application of the adaptive

LASSO in high-dimensional settings. In this data set, F1 animals were intercrossed and 120 twelve-

week-old male offspring were selected for tissue harvesting from the eyes and microarray analysis.
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The microarrays used to analyze the RNA from the eyes of these F2 animals contain over 31,042

different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array). The intensity values were

normalized using the RMA (robust multi-chip averaging, Bolstad 2003, Irizzary 2003) method to

obtain summary expression values for each probe set. Gene expression levels were analyzed on

a logarithmic scale. For the 31,042 probe sets on the array, we first excluded probes that were

not expressed in the eye or that lacked sufficient variation. The definition of expressed was based

on the empirical distribution of RMA normalized values. For a probe to be considered expressed,

the maximum expression value observed for that probe among the 120 F2 rats was required to

be greater than the 25th percentile of the entire set of RMA expression values. For a probe to

be considered “sufficiently variable”, it had to exhibit at least 2-fold variation in expression level

among the 120 F2 animals. A total of 18,976 probes met these two criteria.

We are interested in finding the genes whose expression are correlated with that of gene TRIM32.

This gene was recently found to cause Bardet-Biedl syndrome (Chiang et al. 2006), which is a

genetically heterogeneous disease of multiple organ systems including the retina. The probe from

TRIM32 is 1389163 at, which is one of the 18, 976 probes that are sufficiently expressed and variable.

One approach to finding the probes among the remaining 18, 975 probes that are most related to

TRIM32 is to use regression analysis. Here the sample size n = 120 (i.e., there are 120 arrays

from 120 rats), and the number of probes is 18, 975. Also, it is expected that only a few genes

are related to TRIM32. Thus this is a sparse, high-dimensional regression problem. We use the

proposed approach in the analysis. We first standardize the probes so that they have mean zero

and standard deviation 1. We then do the following steps:

1. Select 3000 probes with the largest variances;

2. Compute the marginal correlation coefficients of the 3000 probes with the probe correspond-

ing to TRIM32;

3. Select the top 200 covariates with the largest correlation coefficients. This is equivalent to

selecting the covariates based on univariate regression, since covariates are standardized.

4. The estimation and prediction results from ada-lasso and lasso are provided below.

Table 2 lists the probes selected by the adaptive LASSO. For comparison, we also used the

LASSO. The LASSO selected 5 more probes than the adaptive LASSO. To evaluate the performance

of adaptive LASSO relative to LASSO, we use cross validation and compare the predictive mean
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square errors (MSEs). Table 3 gives the results when the number of covariates p = 100, 200, 300, 400

and 500. We randomly partition the data into a training set and a test set, the training set consists

of 2/3 observations and the test set consists of the remaining 1/3 observations. We then follow

steps 3 and 4 above to fit the model with the training set, then calculate the prediction MSE for

the testing set. We repeat this process 300 times, each time a new random partition is made.

The values in Table 3 are the medians of the results from 300 random partitions. In the table,

# cov is the number of covariates being considered; Nonzero is the number of covariates in the

final model; Corr is the correlation coefficient between the predicted value based on the model

and the observed value; Coef is the slope of the regression of the fitted values of Y against the

observed values of Y , which shows the shrinkage effects of the two methods are similar. Overall,

we see that the performance of the adaptive LASSO and LASSO are similar. However, there are

some improvement of adaptive LASSO over LASSO in terms of prediction MSEs. Notably, the

number of covariates selected by the adaptive LASSO is fewer than that selected by LASSO, yet

the prediction MSE of the adaptive LASSO is smaller.

5 Concluding remarks

The adaptive LASSO is a two-step approach. In the first step, an initial estimator is obtained. Then

a penalized optimization problem with a weighted L1 penalty must be solved. The initial estimator

does not need to be consistent, but it should be zero-consistent. Under the partial orthogonality

condition, a simple zero-consistent initial estimator can be obtained from univariate regression.

Comparing to the LASSO, the theoretical advantage of the adaptive LASSO is that it has the

oracle property. Comparing to the SCAD and bridge methods which also have the oracle property,

the advantage of adaptive LASSO is its computational efficiency. Given the initial estimator, the

computation of adaptive LASSO estimate is a convex optimization problem and its computational

cost is the same as LASSO. Indeed, the entire regularization path of adaptive LASSO can be

computed with the same computational complexity as the least squares solution using the LARS

algorithm (Efron et al. 2004 ). Therefore, the adaptive LASSO is a useful method for analyzing

high-dimensional data.

We have focused on the adaptive LASSO in the context of linear regression models. This method

can be applied in a similar way to other models such as the generalized linear and Cox models. It
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would be interesting to generalized the results of this paper to these more complicated models.

6 Appendix

Let ψd(x) = exp(xd) − 1 for d ≥ 1. For any random variable X its ψd-Orlicz norm ‖X‖ψd
is

defined as ‖X‖ψd
= inf{C > 0 : Eψd(|X|/C) ≤ 1}. Orlicz norm is useful for obtaining maximal

inequalities, see Van der Vaart and Wellner (1996), Section 2.2.

Lemma 1 Suppose that ε1, . . . , εn are mutually uncorrelated random variables with Eεi = 0 and

Var(εi) = σ2. Furthermore, suppose that their tail probabilities satisfy P (|εi| > x) ≤ K exp(−Cxd), i =

1, 2, . . . for constants C and K, and for 1 ≤ d ≤ 2. Let c1, . . . , cn be constants satisfying
∑n

i=1 c2
i ≤

ξ2
2 , where 0 < ξ2 < ∞. Let W =

∑n
i=1 aiεi.

(i) (a) For 1 < d ≤ 2, ‖W‖ψd
≤ Kd

{
ξ2σ + ((1 + K)1/dC−1/dξ2

}
, where Kd is a constant.

(i)(b) For d = 1, ‖W‖ψ1 ≤ K1

{
ξ2 σ + K ′(1 + K)C−1ξ2 log(n)

}
.

(ii)(a) For 1 < d ≤ 2, let W1, . . . , Wm be any random variables satisfying ‖Wj‖ψd
≤ c, 1 ≤ j ≤ m.

For any wn > 0,

P
(

max
1≤j≤m

|Wj | ≥ wn

)
≤ c(log m)1/d

wn

for a constant c not depending on n.

(ii)(b) For d = 1, let W1, . . . , Wm be any random variables satisfying ‖Wj‖ψd
≤ c log n, 1 ≤ j ≤

m. For any wn > 0,

P
(

max
1≤j≤m

|Wj | ≥ wn

)
≤ c (log n)(log m)

wn

Proof of 1. (i) (a) Because εi satisfies P (|εi| > x) ≤ K exp(−Cxd), its Orlicz norm ‖εi‖ψ2 ≤
[(1 + K)/C]1/d (Lemma 2.2.1, VW 1996). Let d′ be given by 1/d + 1/d′ = 1. By Proposition A.1.6

of VW (1996), there exists a constant Kd such that

∥∥∥∥∥
n∑

i=1

aiεi

∥∥∥∥∥
ψd

≤ Kd



E|

n∑

i=1

ciεi|+
[

n∑

i=1

‖aiεi‖d′
ψd

]1/d′




≤ Kd






E

(
n∑

i=1

aiεi

)2



1/2

+ (1 + K)1/dC−1/d

[
n∑

i=1

|ai|d′
]1/d′




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≤ Kd



ξ2 σ + (1 + K)1/dC−1/d

[
n∑

i=1

|ai|d′
]1/d′



 .

For 1 < d ≤ 2, d′ = d/(d− 1) ≥ 2. Thus
∑n

i=1 |ai|d′ =
∑n

i=1 |ai|d′−2|ai|2 ≤ ξd′−2
2

∑n
i=1 a2

i ≤ ξd′
2 . It

follows that ∥∥∥∥∥
n∑

i=1

aiεi

∥∥∥∥∥
ψd

≤ Kd

{
ξ2 σ + (1 + K)1/dC−1/dξ2

}
.

(i)(b) For d = 1, by Proposition A.1.6 of VW (1996), there exists a constant K1 such that

∥∥∥∥∥
n∑

i=1

aiεi

∥∥∥∥∥
ψ1

≤ K1

{
E|

n∑

i=1

aiεi|+ ‖ max
1≤i≤n

|ciεi|‖ψ1

}

≤ K1

{
ξ2 σ + K ′ log(n) max

1≤i≤n
‖aiεi‖ψ1

}

≤ K1

{
ξ2 σ + K ′(1 + K)C−1 log(n) max

1≤i≤n
|ci|

}

≤ K1

{
ξ2 σ + K ′(1 + K)C−1ξ2 log(n)

}
,

where the last inequality follows from the inequality max1≤i≤n a2
i ≤

∑n
i=1 a2

i ≤ ξ2
2 .

(ii) (a) By Lemma 2.2.2 of Van der Vaart and Wellner (1996),

‖ max
1≤j≤m

Wj‖ψd
≤ K (log m)1/d

for a constant K. Because E|W | ≤ (log 2)1/d‖W‖ψd
for any random variable W , we have

E( max
1≤j≤mn

|Wj |) ≤ K ′(log mn)1/d,

where K ′ = K(log 2)1/d. By the Markov inequality, we have

P
(

max
1≤j≤mn

|Wj | ≥ wn

)
≤ K ′(log mn)1/d

wn
.

(ii) (b) can be proved similarly. This completes the proof.

Lemma 2 Let εn = (ε1, . . . , εn) be given as in Lemma 1.

(i) Let ηn = 2n−1/2Σ−1
n11X

′
1εn ≡ (ηn1, . . . , ηnkn)′. Then ηj has the same Orlicz norm property
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as ε1. That is, for 1 < d ≤ 2, ‖ηj‖ψd
≤ c and, for d = 1, ‖ηj‖ψ1 ≤ c log n.

(ii) Let ζn = 2n−1/2X′
n2(I−Hn)εn = (ζ1, . . . , ζmn)′. Then ζj has the same Orlicz norm property

as ε1. That is, for 1 < d ≤ 2, ‖ζj‖ψd
≤ c and, for d = 1, ‖ζj‖ψ1 ≤ c log n.

Proof This lemma follows from the scaling of the covariates given in (4), condition (A4), and

Lemma 1.

Proof of Theorem 1. By Lemma 1,

P(β̂n =s βn0) ≥ 1− P(Ac
n ∪Bc

n) ≥ 1− P(Ac
n)− P(Bc

n).

To prove the theorem, it suffices to show that P(Ac
n) → 0 and P(Bc

n) → 0.

We first consider P(Ac
n). Let ηn = 2n−1/2Σ−1

n11X
′
1εn ≡ (ηn1, . . . , ηnkn)′. By Lemma 1, ηn1, . . . , ηnkn

are sub-Gaussian. Let un ≡ Σ−1
n11sn, where sn = Wn1sgn(βn1). We can write

Ac
n =

{
ηn ≥ 2

√
n |βn1| − n−1/2λn|un|

}
.

Then

P(Ac
n) = P(Ac

n ∩ {|wn1| ≤ c1b
−1
n1 }) + P(Ac

n ∩ {|wn1 > c1b
−1
n1 })

≤ P(Ac
n ∩ {|wn1| ≤ c1b

−1
n1 }) + P(|wn1| > c1b

−1
n1 ), (14)

where {|wn1| ≤ c1b
−1
n1 } = {|wn1j | ≤ c1b

−1
n1 , 1 ≤ j ≤ kn}. By condition (A2), P(|wn1| > c1b

−1
n1 ) → 0.

So it suffices to show that the first term on the right-hand side of (14) converges to zero.

Let τn1 ≤ · · · ≤ τnkn be the eigenvalues of Σn11 and γ1, . . . , γkn the associated eigenvectors. By

spectrum decomposition,

Σ−1
n11 =

kn∑

j=1

τ−1
nj γjγ

′
j .

Then

un = Σ−1
n11Wn1sgn(βn1) = Σ−1

n11sn =
kn∑

j=1

τ−1
nj γjγ

′
jsn.

The lth element of un is

ul =
kn∑

j=1

τ−1
nj (γ′jsn)γjl, l = 1, . . . , kn.
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By the Cauchy-Schwartz inequality,

|ul|2 ≤ τ−2
kn

kn∑

j=1

(γ′jsn)2
kn∑

j=1

(γjl)2 ≤ τ−2
n1

kn∑

j=1

‖γj‖2‖sn‖2 = τ−2
n1 kn‖sn‖2. (15)

By the definition of sn, ‖sn‖2 = ‖wn1‖2. On {|wn1| ≤ c1b
−1
n1 }

‖sn‖2 ≤ c1knb−2
n1 . (16)

From (15) and (16), we have

|ul| ≤ τ−1
n1 knwn1 ≤ c1τ

−1
1 knb−1

n1 , l = 1, . . . , kn.

Let c′1 = c1τ
−1
1 , νn = 2

√
nbn1 − c′1n

−1/2λnknb−1
n1 and,

Cn1 = {|ηj | ≥ νn, j = 1, . . . , kn} = { max
1≤j≤kn

|ηj | ≥ νn}.

By the definition of Ac
n,

Ac
n ∩ {|wn1 ≤ c1b

−1
n1 } ⊆ Cn1. (17)

By Lemma 1, for 1 < d ≤ 2,

P(Cn1) = P
(

max
1≤j≤kn

|ηj | ≥ νn

)
≤ K ′(log kn)1/2

νn
.

Write
(log 2)1/2K log(kn)

νn
=

K ′(log kn)1/d

√
nbn1[2− (λnkn/nb2

n1)]
.

Under condition (A3a),
(log kn)1/d

√
n bn1

→ 0, and
λnkn

nb2
n1

→ 0,

we have
(log kn)1/d

νn
→ 0.

For d = 1,

P(Cn1) = P
(

max
1≤j≤kn

|ηj | ≥ νn

)
≤ c(log n)(log kn)

νn
.
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Under condition (A3b), (log n)(log kn)/nun → 0. It follows that P(Cn1) → 0. By (17), it follows

that P(Ac
n ∩ {|wn1| ≤ c1b

−1
n1 }) → 0.

Now consider P(Bc
n). Let ζn = 2n−1/2X′

n2(I − Hn)εn = (ζn
1 , . . . , ζn

mn
)′. Then by Lemma 1,

ζn
1 , . . . , ζn

mn
are sub-Gaussian.

Let vn = Σn21Σ−1
n11Wn1sgn(β10) = Σn21un. We can write

Bc
n =

{
|ζn| > n−1/2λnwn2 − n−1/2λn|vn|

}
.

Let Dn = {wn2 > rn,wn1 ≤ c1b
−1
n1 }. We have

P(Bc
n) = P(Bc

n ∩Dn) + P(Bc
n ∩Dc

n)

≤ P(Bc
n ∩Dn) + P(Dc

n). (18)

By conditions (A2),

P(Dc
n) ≤ P(wn2 < rn) + P(wn1 > c1b

−1
n1 ) → 0.

It suffices to show that P(Bc
n ∩Dn) → 0. By the scaling of the covariates, the (j, l)th element of

Σn21 ∣∣∣∣∣n
−1

n∑

i=1

xi2jxi1l

∣∣∣∣∣ ≤
(

n−1
n∑

i=1

x2
i2j · n−1

n∑

i=1

x2
i1l

)1/2

= 1.

On Dn, by the definition of vn and (15), the jth element of vn

|vnj | = n−1

∣∣∣∣∣
kn∑

l=1

n∑

i=1

xi2lxi1junl

∣∣∣∣∣ ≤
kn∑

l=1

|unl| ≤ c′1k
2
nb−1

n1 , j = 1, . . . , mn.

Let ξn = n−1/2λnrn − n−1/2λnc′1k
2
nb−1

n1 and

Cn2 = {|ζn| ≤ ξn} =
{

max
1≤j≤mn

|ζnj | ≤ ξn

}
.

Then Bc
n ∩Dn ⊆ Cn2. For 1 < d ≤ 2, we have

P(Cn2) = P
(

max
1≤j≤mn

|ζnj | > ξn

)
≤ (K ′(log mn)1/d

ξn
.
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Now
K ′(log mn)1/d

ξn
=

K ′(log mn)1/d

n−1/2λnψn[1− (c′1k2
n/rnbn1)]

.

Under condition (A3a), √
n(log mn)1/d

λnrn
→ 0, and

k2
n

rnbn1
→ 0.

For d = 1, we have

P(Cn2) = P
(

max
1≤j≤mn

|ζnj | > ξn

)
≤ c(log n)(log mn)

ξn
.

Under condition (A3b), (log n)(log mn)/ξn → 0. Thus in either case, P(Cn2) → 0. It follows that

P(Bc
n) → 0.

Proof of Theorem 3. Because β20 = 0, we have

β̃j = n−1
n∑

i=1

xij(x′(1)iβ10 + x′(2)iβ20 + εi) = n−1
n∑

i=1

xij(x′(1)iβ10 + εi).

For j ∈ Jn0, let µ0
nj = Eβ̃nj . Write

µ0
nj = n−1

n∑

i=1

xijx′(1)iβ10 = n−1
kn∑

k=1

n∑

i=1

xijxikβ10k. (19)

Let µ0
n = maxj∈Jn0 |µ0

nj |. Under condition (B2), µ0
n = O(knn−1/2).

For j ∈ Jn1, let µ1
nj = Eβ̃nj . Then

µ1
nj = ξnj = n−1

n∑

i=1

xijx′(1)iβ10. (20)

Let µ1
n = minj∈Jn1 |ξ1

nj |. By condition (B3), µ1
n > 2ξrbn1.

We first show that

P
(

rn max
j∈Jn0

|β̃nj | > C

)
→ 0. (21)

We have

P
(

rn max
j∈Jn0

|β̃nj | > C

)
= P

(
rn max

j∈Jn0

|β̃nj − µnj + µnj | > C

)
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≤ P
(

rn max
j∈Jn0

|β̃nj − µ0
nj | > C − rnµn

)

= P
(√

n max
j∈Jn0

|β̃nj − µnj | > r−1
n

√
nC −√nµn

)
. (22)

Note that

n1/2(β̃j − µ0
nj) = n−1/2

n∑

i=1

xijεi.

By Lemma 1, for 1 < d ≤ 2,

P
(

rn max
j∈Jn0

|β̃nj | > C

)
≤ K ′ log1/d(mn)

r−1
n n1/2 − n1/2µn

= O(n−1/2rn log1/2(mn)),

and for d = 1,

P
(

rn max
j∈Jn0

|β̃nj | > C

)
≤ K ′(log n)(log mn)

r−1
n n1/2 − n1/2µn

= O(n−1/2rn(log n)(log mn)).

Since n1/2|µn| = O(kn) and rnkn/n1/2 → 0, for 1 < d ≤ 2,

P
(

rn max
j∈Jn0

|β̃nj | > C

)
= O(n−1/2rn log1/d(mn)).

For d = 1,

P
(

rn max
j∈Jn0

|β̃nj | > C

)
= O(n−1/2rn(log n)(log mn)).

Therefore, under condition (B4), (21) follows.

Next, we show that P(minj∈Jn1 |β̃nj | ≥ ξrbn1) → 1, or equivalently,

P( min
j∈Jn1

|β̃nj | < ξrbn1) → 0. (23)

We have

P
(

min
j∈Jn1

|β̃nj | < ξrbn1

)
= P


 ⋃

j∈Jn1

{
|β̃nj | < ξrbn1

}



≤
∑

j∈Jn1

P
(
|β̃nj | < ξrbn1

)
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=
∑

j∈Jn1

P
(
|β̃nj − µ1

nj + µ1
nj | < ξrbn1

)

≤
∑

j∈Jn1

P
(
n1/2|µ1

nj | − n1/2|β̃nj − µ1
nj | < ξrn

1/2bn1

)

=
∑

j∈Jn1

P
(
n1/2|β̃nj − µ1

nj | > n1/2ξ1
n − ξrn

1/2bn1

)

≤ knK exp[−C(n1/2µ1
n − ξrn

1/2bn1)d]

≤ knK exp[−Cξd
rnd/2bd

n1].

Thus under condition (B4), (23) follows. Now the theorem follows from (21) and (23).
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Figure 1: Simulation study (examples 1–4): probability of individual covariate effect being correctly
identified. Circle (blue): LASSO; Triangle (red): adaptive Lasso.
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Figure 2: Simulation study (examples 5–8): probability of individual covariate effect being correctly
identified. Circle (blue): LASSO; Triangle (red): adaptive Lasso.
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Table 1. Simulation study, comparison of adaptive LASSO with LASSO. PMSE: median of PMSE,

inside “()” are the corresponding standard deviations. Covariate: median of number of covariates

with nonzero coefficients.

LASSO Adaptive-LASSO

Example PMSE Covariate PMSE Covariate

1 3.829 (0.769) 58 3.625 (0.695) 50

2 3.548 (0.636) 54 2.955 (0.551) 33

3 3.148 (0.557) 48 2.982 (0.540) 40

4 3.604 (0.681) 50 3.369 (0.631) 43

5 3.304 (0.572) 50 2.887 (0.499) 33

6 3.098 (0.551) 42 2.898 (0.502) 36

7 3.740 (0.753) 59 3.746 (0.723) 53

8 3.558 (0.647) 55 3.218 (0.578) 44
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Table 2. The probe sets identified by LASSO and adaptive LASSO that correlated with TRIM32.

Probe ID LASSO Adaptive-LASSO

1369353 at -0.021 -0.028

1370429 at -0.012

1371242 at -0.025 -0.015

1374106 at 0.027 0.026

1374131 at 0.018 0.011

1389584 at 0.056 0.054

1393979 at -0.004 -0.007

1398255 at -0.022 -0.009

1378935 at -0.009

1379920 at 0.002

1379971 at 0.038 0.041

1380033 at 0.030 0.023

1381787 at -0.007 -0.007

1382835 at 0.045 0.038

1383110 at 0.023 0.034

1383522 at 0.016 0.01

1383673 at 0.010 0.02

1383749 at -0.041 -0.045

1383996 at 0.082 0.081

1390788 a at 0.013 0.001

1393382 at 0.006 0.004

1393684 at 0.008 0.003

1394107 at -0.004

1395415 at 0.004
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Table 3. Prediction results using cross validation. 300 random partitions of the data set are made,

in each partition, the training set consists of 2/3 observations and the test set consists of the

remaing 1/3 observations. The values in the table are medians of the results from 300 random

partitions. In the table, # cov is the number of covariates being considered; nonzero is the number

of covariates in the final model; corr is correlation coefficient between the fitted and observed values

of Y ; coef is the slope of the regression of the fitted values of Y against the observed values of Y ,

which shows the shrinkage effect of the methods.

LASSO Adaptive-LASSO

# cov nonzero mse corr coef nonzero mse corr coef

100 20 0.005 0.654 0.486 18 0.006 0.659 0.469

200 19 0.005 0.676 0.468 17 0.005 0.678 0.476

300 18 0.005 0.669 0.443 17 0.005 0.671 0.462

400 22 0.005 0.676 0.442 19 0.005 0.686 0.476

500 25 0.005 0.665 0.449 22 0.005 0.670 0.463
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